Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services
نویسندگان
چکیده
The Service-Oriented Architecture (SOA) demands supportive technologies and new requirements for mobile collaboration across multiple platforms. One of its representative solutions is intelligent information security of enterprise resources for collaboration systems and services. Digital watermarking became a key technology for protecting copyrights. In this article, the authors propose a method of key generation scheme for static visual digital watermarking by using machine learning technology, neural network as its exemplary approach for machine learning method. The proposed method is to provide intelligent mobile collaboration with secure data transactions using machine learning approaches, herein neural network approach as an exemplary technology. First, the proposed method of key generation is to extract certain type of bit patterns in the forms of visual features out of visual objects or data as training data set for machine learning of digital watermark. Second, the proposed method of watermark extraction is processed by presenting visual features of the target visual image into extraction key or herein is a classifier generated in advance by the training approach of machine learning technology. Third, the training approach is to generate the extraction key, which is conditioned to generate watermark signal patterns, only if proper visual features are presented to the classifier. In the proposed method, this DOI: 10.4018/978-1-4666-1767-4.ch006
منابع مشابه
مدیریت کلید در سیستمهای مدیریت حقوق دیجیتال در حالت برونخطی
By expanding application of digital content in the world of information technology, supervision and control over the data, and also preventing the copy of documents is considered. In this relation digital rights management systems are responsible for the secure distribution of digital content, and for this purpose the common functions in the field of cryptography and utilize Digital watermarkin...
متن کاملMethod For Digital Watermarking Using ANN
Soft computing in the area of information security is a promising field for the creation of intelligent solutions. This paper discusses a method for digital watermarking using artificial neural networks to realize secure copyright protection of visual information without any damage. The discussed watermark extraction keys and feature extraction keys identify the secure and unique hidden pattern...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملDiagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks
Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJSSOE
دوره 1 شماره
صفحات -
تاریخ انتشار 2010